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Surgical Workflow Analysis Pitfalls of BatchNorm Analysis & Solution
Common multi-stage training: Idea of BatchNorm: We show:
1. Approximate feature distributions 2. Normalize features 1. BatchNorm models fail in
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Why is end-to-end training not common? Pitfall 2: B2 (xGay o 2stage: 0]
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One reason: dependency on other batch samples

BatchNorm induces pitfalls (including future frames) 3. Results can be reproduced on

for training CNNs on x — E[x] >computed from non-surgical video tasks
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